
BC143

AUDIO AMPLIFIER

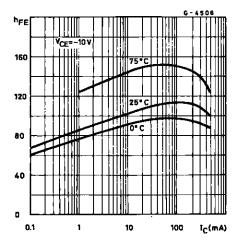
DESCRIPTION

The BC143 is a silicon planar epitaxial PNP transistor specially designed for use in the driver of high power audio amplifiers.

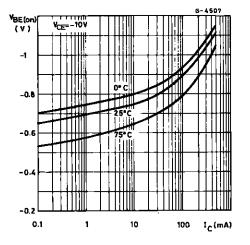
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage ($I_E = 0$)	- 60	V
V _{CEO}	Collector-emitter Voltage ($I_B = 0$)	- 60	V
V _{EBO}	Emitter-base Voltage ($I_{\rm C} = 0$)	- 5	V
Ι _C	Collector Current	– 1	А
P _{tot}	Total Power Dissipation at $T_{amb} \le 25 \text{ °C}$	0.75	W
	at T _{case} ≤ 25 °C	4	W
T _{stg} , T _j	Storage and Junction Temperature	– 55 to 175	°C

THERMAL DATA

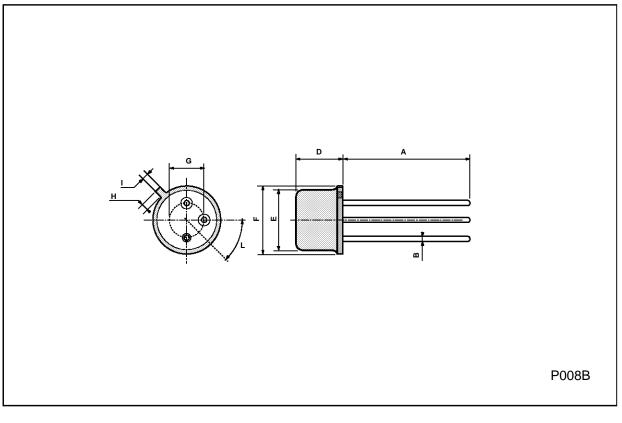

R _{th j-case}	Thermal Resistance Junction-case	Max	37	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	200	°C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C unless otherwise specified)


Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cutoff Current ($I_E = 0$)	V _{CB} = - 30 V V _{CB} = - 30 V	(T _{amb} = 150 °C)			- 50 - 50	nA μA
V _{(BR)CBO}	Collector-base Breakdown Voltage (I _E = 0)	I _C = 100 μA		- 60			V
V _{(BR)CEO} *	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA		- 60			V
V _{(BR)EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 10 μA		- 5			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$I_{\rm C} = 500 \text{ mA}$ $I_{\rm C} = 1\text{A}$	I _B = 50 mA I _B = 100 mA		- 0.25 - 0.7	- 0.5 - 1	V V
V _{BE} *	Base-emitter Voltage	$I_{\rm C} = -500 \text{ mA}$	$V_{CE} = -10 V$		- 1.1		V
h _{FE} *	DC Current Gain	I _C = 100 mA I _C = - 300 mA		20	110 110 40 25		
h _{fe}	High Frequency Current Gain	l _C = 50 mA f = 100 MHz	$V_{CE} = -10 V$		1.5		
Ссво	Collector-base Capacitance	I _E = 0 f = 1 MHz	$V_{CB} = -10 V$		13		pF

* Pulsed : pulse duration = $300 \,\mu$ s, duty cycle = 1 %.

DC Current Gain vs. Collector Current.


Base-emitter on Voltage vs. Collector Current.

201	00	82.	200		82				883	20	22	82	600	42.	22	62	22	88	233	92	28	22	38	200	23	8		223	883	- 22		222	200		822	83	00	223	825		
800	50	κ.	-	-		w		1935	8	a 1	28	83		- 22	6	- 54		88	- 22	х.	22		80	8	87	-	× .	A	23	33		ж.	8	100		62			ο.	893	
201	83	н				۰.		83	88	л.		8							10	L	ь.						000	23	÷.,	-83		88	33			۰.	-		24		
833	12	8	100	6	۰.	5	10	100	88	24	12	63	~ 10	66	λ.		-	83	- 66		- 14	28	8.	6	6.	00	. /		÷.,	20	201	S. 1	600			۰.	88	600		÷.,	
89.5	-88	80		- 22	2.5	- 62			ю.	22.4	÷.	22.		.00	ь.	- 60	27	993	-00	68	88	85	88	20	89		ex.,		π.		201	88.6		536-		8 .	88.	201	.000	S	

DIM.		mm		inch								
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.						
А	12.7			0.500								
В			0.49			0.019						
D			6.6			0.260						
E			8.5			0.334						
F			9.4			0.370						
G	5.08			0.200								
н			1.2			0.047						
I			0.9			0.035						
L	45° (typ.)											

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

